Lesson 1.2
Investigating a Biodome
Examining the *Biodome Files*

Dr. Corry left some of the Econauts’ files about the biodome for you to examine. Take a few minutes to read at least one of these files. You may want to annotate the articles as you read. Once you’re finished reading, record your ideas that might answer the Chapter 1 Question and share them with your partner.

Chapter 1 Question: *Why didn’t the plants and animals in the biodome have enough energy storage molecules?*

Name: ___ Date: ________________________
Introducing the Simulation

Part 1: Exploring the Simulation
Talk with your partner as you explore the Matter and Energy in Ecosystems Sim. Share what you both notice.

• What do you notice about changes you can make in the Sim?
• What questions do you have about the Sim?

Part 2: Observing Energy Storage Molecules in an Ecosystem
With a partner, observe the Sim and see if you can get any evidence to help you answer the question Where do the energy storage molecules in an ecosystem come from?

1. Observe the Sim, paying attention to the movement of the energy storage molecules throughout the ecosystem.
2. In the table below, record what you observe about the flow of energy storage molecules into and out of different parts of the ecosystem.
3. After you complete the table, answer the discussion questions with your partner.

<table>
<thead>
<tr>
<th>Part of ecosystem</th>
<th>Contains energy storage molecules? (yes or no)</th>
<th>Energy storage molecules flowing in? (yes or no)</th>
<th>Energy storage molecules flowing out? (yes or no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Producers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decomposers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dead matter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abiotic matter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion Questions

• Where do energy storage molecules first appear in the ecosystem?
• What ideas do you have about where energy storage molecules in an ecosystem come from?
Group Builds Ecosystem from Scratch

The Econauts, a local group of space fans, have built a glass dome bigger than a football field. Inside, they have installed their very own ecosystem, complete with trees, plants, and animals. The dome is completely enclosed, but the plants and animals inside should have all the air and water they need to survive. This type of enclosed ecosystem is known as a biodome.

Members of the group plan to live sealed inside this biodome for several years. Their aim is to find out whether humans could build domes like this on the Moon, Mars, or other planets, creating livable spaces and food sources out in space.

The members of Econauts are not astronauts or scientists, just space fans who hope to live in space someday. Group members have varied backgrounds, including careers in business, advertising, gardening, medicine, and goat farming.

Other organizations have attempted to build biodomes in the past, with little long-term success. Ecosystems are complicated, and it’s not so easy to create one that can survive in a sealed glass dome. In order to design their biodome, the Econauts group has hired expert ecologists to give their advice on what kinds of plants and animals to include, and how many of each. With the advice of these ecologists, the group members hope their constructed ecosystem will be self-sustaining, with plenty of plants for the animals to eat, plenty of sunlight and water for the plants, and plenty of air for both.
The human occupants will also be eating food farmed and raised in the biodome. Econaut Sarah Willard stated, “I’m really excited to live inside this biodome and help take care of the animals and plants. It will feel like being one of the first humans to live in a colony on another planet.”

Biodome Fails: Ecologists to Determine Why

Five years ago, a local group of space fans called the Econauts constructed an ecosystem sealed under glass—a biodome. Recently, the group noticed an ominous decrease in the populations of organisms: the ecosystem appeared to be in the process of collapsing. The occupants were safely removed from the biodome, but the cause of the crash is still a mystery. A group of expert ecologists has been hired to investigate the failed biodome and try to determine what went wrong. They will advise the Econaut group on how a second attempt could be improved.

The failed biodome included an ocean and an area of land with a rain forest and a living area for the Econauts. The living area had a farm, living quarters, a goat pasture, and a pit for burying all trash and dead matter.
Biodome File 2:
Econaut Biographies & Job Descriptions

Each of the eight Econauts has been assigned a specific job based on his or her work and interests outside the biodome. They are expected to perform the requirements listed in the descriptions of their jobs, as well as record their activities at least once per season.

The Econauts

Harrison Grant is a 26-year-old water technician from Phoenix, Arizona, who has taken responsibility for the Econauts’ water system. He has loved space since he was a little boy and has thought a great deal about possible water systems for use in space, though he isn’t a professional space scientist.

Erica Li is a 22-year-old college student from Kihei, Hawaii. She is working toward a career in advertising. Erica grew up hunting wild pigs with her family and getting oysters and crabs from the ocean. She learned about the biodome while taking astronomy classes in college, and she can’t wait to bring her hunting and foraging skills into the dome.

Econaut Biographies
Sarah Willard is a 29-year-old goat farmer from Wenatchee, Washington, and she’ll be caring for the Econauts’ herd of twenty goats. Sarah has been an amateur astronomer since she was a teenager, and she never expected that her goat-farming skills would help people learn how to live in space. She’s looking forward to keeping the biodome goats happy and healthy.

Jeff Anderson is a 28-year-old gardener from Fort Collins, Colorado, who is responsible for growing all of the Econauts’ food. Jeff became interested in space on an eighth-grade trip to the Kennedy Space Center in Florida, and has dreamed since then of contributing to the future of humans in space. He hopes his work in the biodome will help future generations learn to grow food if they settle on other planets.

Ana Lopez is a 52-year-old doctor from Greenville, South Carolina, who will provide medical care in the biodome. Ana is fascinated by the idea of living in space, and has studied the medical needs of people living in enclosed spaces so she is prepared to take great care of the Econauts during their project.

Keith Yoo is a 24-year-old banker from Pittsburgh, Pennsylvania, who will serve as the Econauts’ groundskeeper. Keith has no experience with maintaining an ecosystem, but he’s interested in the psychology of people living in confined spaces, so he’s excited to offer his services to the team.

Gabriel Gutierrez is the Econauts’ chef. He is 35 years old and comes from Oklahoma City, where he specializes in farm-to-table cooking. Gabriel works with a local university to study ways of introducing more natural food into the diets of people in space, and he is excited about the challenge of cooking good food from limited sources.

Celeste Parker is a 38-year-old computer network administrator from Minneapolis, Minnesota. She has dreamed of living in space since she was a girl, and hopes to buy a ticket for one of the first commercial flights in space. She will run all of the technology required for the Econauts’ biodome.
Econaut Job Assignments

Gardener: Jeff Anderson
Pick fruits and vegetables and deliver them to the chef. Make sure all plants are receiving enough water. Plant new fruits and vegetables as necessary.

Groundskeeper: Keith Yoo
Maintain biodome buildings and grounds. Rake up dead leaves, place them in sealed garbage bags, and bury them at least 6 feet underground.

Computer Systems Operator: Celeste Parker
Make sure all computer equipment is working properly, and enter all biodome data for graphing.

Water Maintenance: Harrison Grant
Check and maintain the water system so there is enough water available to all organisms.

Chef: Gabriel Gutierrez
Prepare breakfast, lunch, and dinner for each of the residents. Make sure food provides what the Econauts’ bodies need.

Hunter: Erica Li
Hunt rabbits with bow and arrow and deliver to chef. Search for fruits and edible plants in the forest area.

Goatherd: Sarah Willard
Care for goats, making sure they have plenty to eat and drink. Milk goats and deliver milk to chef.

Doctor: Ana Lopez
Provide basic medical care and regular checkups to all biodome residents.

Burial Duty: All (this job rotates monthly)
In order to keep the biodome looking orderly and full of life, we will bury any animals or plants that die. They will be placed in sealed garbage bags and buried at least 6 feet underground. We will bury all garbage as well.

The Econauts will take turns burying all dead matter, droppings, and garbage deep underground.
Biodome File 3: List of Recommended Organisms to Include in the Biodome

<table>
<thead>
<tr>
<th>Producers</th>
<th>Primary Consumers</th>
<th>Secondary Consumers</th>
<th>Decomposers</th>
</tr>
</thead>
<tbody>
<tr>
<td>bananas</td>
<td>pygmy goats</td>
<td>boars</td>
<td>worms</td>
</tr>
<tr>
<td>papayas</td>
<td>billy goats</td>
<td>tilapia (fish)</td>
<td>soil bacteria</td>
</tr>
<tr>
<td>sweet potatoes</td>
<td>chickens</td>
<td>spiders</td>
<td>soil fungus</td>
</tr>
<tr>
<td>beets</td>
<td>cockroaches</td>
<td>snakes</td>
<td>pill bugs</td>
</tr>
<tr>
<td>peanuts</td>
<td>ants</td>
<td>oysters</td>
<td>beetles</td>
</tr>
<tr>
<td>cowpea beans</td>
<td>bees</td>
<td>crabs</td>
<td></td>
</tr>
<tr>
<td>rice</td>
<td>hummingbirds</td>
<td>reptiles</td>
<td></td>
</tr>
<tr>
<td>wheat</td>
<td>bats</td>
<td>scorpions</td>
<td></td>
</tr>
<tr>
<td>morning glories</td>
<td>moths</td>
<td></td>
<td></td>
</tr>
<tr>
<td>phytoplankton</td>
<td>zooplankton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(tiny algae)</td>
<td>(tiny aquatic animals)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rubber trees</td>
<td>butterflies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mosses</td>
<td>termites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ferns</td>
<td>turtles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>elodea</td>
<td>brine shrimp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(aquatic plant)</td>
<td>rabbits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I wonder why they decided not to include worms. Bacteria need worms to break dead matter into smaller pieces so bacteria can feed on it.

It's a good thing that they included producers for both land and water ecosystems.
Looks like the water system in the biodome was well designed. I can't see anything here that would cause the ecosystem to have problems.
Biodome File 5:
Goatherd’s Journal

Year 1

Winter:
Today was the first day of my dream job: my first day herding goats in the Econauts’ biodome! I’m so glad I got to join the team on this great adventure. I’m taking care of a herd of twenty adult goats between the ages of three and eight years. Most goats don’t live longer than ten years, so I might lose a few before we leave the biodome. Still, I’m looking forward to what this experience holds for all of us.

Spring:
To keep our biodome environment neat and clean, the team is taking turns burying all trash, droppings, dead animals, and dead plant matter. Guess whose turn it is this month? Mine! I’ve been raking up all the dead leaves and plants I can find, putting them into garbage bags, and tying the bags tightly before I bury them deep in the ground. At least there haven’t been any dead animals this month! This isn’t my favorite job here in the biodome, but I guess we all have to help out.

Summer:
Summer in the biodome is beautiful! The sun is shining, the birds are singing, and the goats are enjoying all the lush, green grass they can eat. Everybody seems happy and healthy.

Fall:
It’s goat-breeding season here in the biodome. Fingers crossed that we’ll have baby goats—we goatherds call them kids—in the spring! The vet came today for the goats’ annual checkups, and said they’re healthy.
Year 2

Winter:
The winter days are short and cold...and the winter nights are long and cold! There isn’t much food available at this time of year, so I feed the goats hay from the alfalfa we grew last summer. At least they have thick winter coats to keep them warm. Four of our female goats are pregnant and should have their kids when spring comes! Until then, we just have to bundle up and try not to freeze.

Spring:
Our kids were born last week, and they sure are cute! The kids are eating well and growing quickly. It’s such a wonder to watch these new little goats every day. My job is the best!

Summer:
It’s my turn to bury our dead matter again. Burying our dead matter is never my favorite job, but it’s especially tough this month because one of my older goats died last week. I sealed the body in a plastic bag and buried it along with all the dead leaves and plants, droppings, and trash. At least we have kids to help keep our goat population up. Otherwise, everybody in the biodome seems to be doing well.

Fall:
It’s breeding season again! The vet visited for the goats’ yearly checkup and said they’re in good health. Looks like we’re in for another good year in the biodome.
Year 3

Winter:
Winter again, and one of the goats died. I’m not sure what happened—she wasn’t very old, and she didn’t seem sick. I’m sad to have lost one of the herd. Otherwise, we’re all doing pretty well and are trying to stay warm until spring.

Spring:
I love spring! The warm weather is much more comfortable, and it’s good for the goats to have some fresh grass to eat. Two of my goats had kids this year. They’re so cute, and I’m glad we have kids, since we lost a couple of older goats in the last year. It’s my turn to bury dead matter again. It’s a dirty job, but I think I’m getting used to it.

Summer:
I can’t figure out why, but it seems like we’ve harvested less alfalfa this summer than we did in the past. That means there’s less for the goats to eat now, and they’ll have less hay for the winter. Nobody’s sure why, since we’re getting plenty of sunlight in the biodome. I guess I’ll have to start feeding the goats a bit less, so we don’t run out.

Fall:
Time for the goats’ yearly checkup. The vet said the goats don’t have any diseases, but they’re looking a bit thin. I guess we’re seeing the effects of this summer’s alfalfa shortage. I’m not sure what to do: I don’t want to use up too much hay, but I want to make sure the goats have enough to eat. Anyway, it’s breeding season again. Hoping for some kids in the spring!
Year 4

Winter:
I’m starting to get worried. Two of my goats died this winter, and I’m not sure why. The rest of the goats look a little thin, but they eat everything in sight, and they don’t have any diseases. I think we have enough hay to get us through the winter. Maybe everything will get better once the goats can eat some fresh spring grass.

Spring:
None of the goats had kids this spring. I’m so disappointed. Kid goats are so much fun, and I like to think the herd is doing well. It’s my turn to gather and bury dead matter again; I raked up a lot of leaves and droppings, but at least there weren’t any dead animals to bury. Looking forward to a good summer harvest for the goats.

Summer:
This year’s alfalfa harvest is even smaller than last year’s. I’m worried about how we’re going to feed the goats enough this summer and still have enough alfalfa to make hay for the winter.

Fall:
It’s breeding season again, and time for our yearly visit from the vet. She said the goats don’t show any signs of disease, but that they are looking very thin. This seems to be a problem with many of the animals in the biodome: they are all getting thinner. I don’t know what to do; the alfalfa crop is still producing less than in the first few years of the biodome project.
Year 5

Winter:
Three more goats died this winter. I was sad to lose them, and I’m confused about what’s happening to the goats. I know they’re not sick, but why aren’t they really healthy? Should I be doing something different? Something has to change soon.

Spring:
Another spring with no kids born. We now have fewer goats than we started with, even though six kids were born in the early years of the biodome. I don’t like to see the herd getting smaller. It’s my turn to gather and bury dead matter again.

Summer:
This summer’s alfalfa harvest was the smallest yet. I’m not sure what the goats are going to eat this winter. They’re already too thin.

Fall:
We’ve all been removed from the biodome. It turns out all of the populations had started to decrease, and it wasn’t safe for us to stay. The vet couldn’t find any signs of disease, though. I wonder what happened. I’m so sad that we won’t be able to complete our mission.
Examinar los expedientes del biodomo

El Dr. Corry te dejó algunos de los expedientes de los/as Econautas acerca del biodomo. Toma unos minutos para leer por lo menos uno de estos expedientes. Podría ser conveniente añadir apuntes a los artículos mientras lees. Una vez que hayas terminado de leer, apunta tus ideas que podrían contestar la pregunta del capítulo 1 y compártelas con tu compañero/a.

Pregunta del capítulo 1: ¿Por qué las plantas y los animales en el biodomo no tenían suficientes moléculas de almacenamiento de energía?

Presentando la Simulación

Parte 1: explorar la Simulación

Habla con tu compañero/a mientras exploran la Simulación Matería y energía en los ecosistemas. Discute lo que ambos noten.

- ¿Qué notas sobre los cambios que puedes hacer en la Simulación?
- ¿Qué preguntas tienes sobre la Simulación?

Parte 2: observar moléculas de almacenamiento de energía en un ecosistema

Con un/a compañero/a, observa la Simulación e intenta reunir evidencia para ayudarte a contestar la pregunta ¿De dónde vienen las moléculas de almacenamiento de energía en un ecosistema?

1. Observa la Simulación, prestando atención al movimiento de las moléculas de almacenamiento de energía a través del ecosistema.
2. En la siguiente tabla, apunta lo que observas acerca del flujo de moléculas de almacenamiento de energía hacia dentro y hacia fuera de las diferentes partes del ecosistema.
3. Después de completar la tabla, contesta las preguntas para discutir con tu compañero/a.

<table>
<thead>
<tr>
<th>Parte de ecosistema</th>
<th>¿Contiene moléculas de almacenamiento de energía? (sí o no)</th>
<th>¿Moléculas de almacenamiento de energía fluyendo hacia dentro? (sí o no)</th>
<th>¿Moléculas de almacenamiento de energía fluyendo hacia fuera? (sí o no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumidores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Descomponedores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materia muerta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materia abiótica</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preguntas para discutir

- ¿Dónde aparecen primero moléculas de almacenamiento de energía en el ecosistema?
- ¿Qué ideas tienes sobre el origen de las moléculas de almacenamiento de energía en un ecosistema?
Un grupo construye un ecosistema desde cero

Los/as Econautas, un grupo local de fanáticos/as del espacio, han construido un domo de vidrio más grande que una cancha de fútbol. Dentro han instalado su propio ecosistema, lleno de árboles, plantas y animales. El domo está completamente cerrado, pero las plantas y animales dentro deberían tener todo el aire y agua que necesitan para sobrevivir. Este tipo de ecosistema cerrado se conoce como biodomo.

El grupo tiene planeado vivir dentro de este biodomo por varios años. Su meta es averiguar si los humanos podrían construir domos como este en la Luna o en Marte u otros planetas, creando así espacios viables y fuentes de alimento fuera en el espacio.

Los/as Econautas no son astronautas ni científicos/as... son solo fanáticos/as del espacio quienes esperan vivir algún día en el espacio. La gente en el grupo tiene una variedad de procedencias, que incluye carreras en negocios, publicidad, jardinería, medicina y el cuidado de cabras.

Otras organizaciones han intentado construir biodomos en el pasado, con poco éxito a largo plazo. Los ecosistemas son complicados, y no es tan fácil crear uno que pueda sobrevivir en un domo de vidrio sellado. Para poder diseñar su biodomo, el grupo de Econautas ha contratado ecologistas expertos/as para que proporcioneon consejos sobre qué tipos de plantas y animales incluir, y cuántos de cada uno. Con el consejo de los/as ecologistas, el grupo espera que su ecosistema construido sea auto-sostenible, con una plenitud de plantas para que coman los animales, mucha luz solar...
y agua para las plantas y mucho aire para las plantas y los animales.

Los humanos también se alimentarán de comida cultivada y cosechada en el biodomo. La Econauta Sarah Willard dijo, “Estoy muy emocionada de vivir dentro de este biodomo y de ayudar a cuidar los animales y las plantas. Se sentirá como si yo fuera uno de los primeros humanos en vivir en una colonia en otro planeta”.

El biodomo fracasa: los/as ecologistas determinarán por qué

Hace cinco años, un grupo local de fanáticos/as del espacio, los/as Econautas, construyeron un ecosistema sellado bajo vidrio: un biodomo. Hace poco, el grupo notó una disminución preocupante en las poblaciones de los organismos. El ecosistema parecía estar en proceso de colapso. Los/as ocupantes salieron a salvo del biodomo, pero la causa de la quiebra aún es un misterio. Un grupo de ecologistas expertos/as ha sido contratado para investigar el biodomo fracasado y para intentar determinar qué salió mal. Los/as ecologistas aconsejarán al grupo Econauta acerca de cómo podría ser mejorado un segundo intento.

Mapa del biodomo

El biodomo fracasado incluía un océano y un área terrestre con un bosque lluvioso y un área de viviendas para los/as Econautas. El área de viviendas contaba con una granja, cuartos, pastizales de cabras y un hoyo para enterrar toda la basura y materia muerta.
Expediente del biodomo 2: biografías de Econautas y descripciones de trabajo

A cada Econauta se le ha asignado un deber específico según su trabajo e intereses fuera del biodomo. Hay expectativas de que llevarán a cabo los requisitos enumerados en las descripciones de sus deberes, así como también apuntar sus actividades por lo menos una vez por temporada.

Econautas

Mantenimiento de agua: Harrison Grant
Doctora: Ana Lopez
Pastora de cabras: Sarah Willard
Cazadora: Erica Li
Jardinero: Jeff Anderson
Cocinero: Gabriel Gutierrez
Encargado de facilidades: Keith Yoo
Operadora del sistema computacional: Celeste Parker

Por qué no habrán incluido un/a ecologista en el equipo? Los/as ecologistas entienden cómo funcionan los ecosistemas.

Cada Econauta tiene un deber dentro del biodomo.

Biografías de Econautas

Harrison Grant es un técnico de agua de 26 años de edad que viene de Phoenix, Arizona. Él ha asumido la responsabilidad del sistema de agua de los/as Econautas. Harrison ha estado fascinado por el espacio desde que era niño y ha pensado mucho sobre posibles sistemas de agua para usar en el espacio, aunque no es un científico profesional del espacio.

Erica Li es una estudiante de universidad de 22 años de edad que viene de Kihei, Hawái. Erica está estudiando una carrera en publicidad.
Erica creció cazando jabalíes con su familia y sacando ostras y cangrejos del mar. Aprendió acerca del biodomo cuando tomó unas clases de astronomía en la universidad y está ansiosa por aportar con sus aficiones de cacería y buscar comida en el domo.

Sarah Willard es una pastora de cabras de 29 años de edad que viene de Wenatchee, Washington, y ella se hará cargo del rebaño de 20 cabras de los/as Econautas. Sarah ha sido aficionada a la astronomía desde que era una adolescente, y nunca se esperó que sus habilidades como pastora de cabras podría ayudar a gente a aprender cómo vivir en el espacio. Sarah está ansiosa de cuidar el rebaño de cabras del biodomo y mantenerlas sanas y contentas.

Jeff Anderson es un jardinero de 28 años de edad que viene de Fort Collins, Colorado. Él será responsable por cultivar toda la comida de los/as Econautas. Jeff se interesó en el espacio durante un paseo al Centro Espacial Kennedy en Florida, cuando estaba en octavo grado. Desde entonces, ha soñado con contribuir al futuro de los humanos en el espacio. Jeff espera que su trabajo en el biodomo ayude a que futuras generaciones aprendan a cultivar comida si se establecen en otros planetas.

Ana Lopez es una doctora de 52 años de edad de Greenville, Carolina del Sur, quien proporcionará atención médica en el biodomo. Ana está fascinada con la idea de vivir en el espacio y ha estudiado las necesidades médicas de gente que vive en espacios cerrados, así que está preparada para darles una excelente atención médica a los/as Econautas durante su proyecto.

Keith Yoo es un banquero de 24 años de edad de Pittsburgh, Pennsylvania, quien servirá como encargado de facilidades para el biodomo. Keith no tiene experiencia en la mantención de un ecosistema, pero está interesado en la psicología de la gente que vive en espacios limitados, así que está encantado de ofrecer sus servicios al equipo.

Gabriel Gutierrez es el cocinero de los/as Econautas. Tiene 35 años de edad y viene de Oklahoma City, donde se especializa en cocina del huerto a la mesa. Gabriel trabaja con una universidad local para estudiar maneras de introducir más comida natural a las dietas de la gente en el espacio, y está contento con el desafío de cocinar usando fuentes limitadas.

Celeste Parker es una administradora de red de computadores. Tiene 38 años y viene de Minneapolis, Minnesota. Ha soñado con vivir en el espacio desde que era una niña, y espera comprar un pasaje para uno de los primeros vuelos comerciales al espacio. Celeste estará a cargo de toda la tecnología necesaria para el biodomo.
Descripciones de trabajos de los/as Econautas

Jardínnero: Jeff Anderson
Recolectar frutas y vegetales y llevárselos al cocinero. Asegurar que todas las plantas estén recibiendo suficiente agua. Plantar nuevas frutas y vegetales a medida que sea necesario.

Encargado de facilidades: Keith Yoo
Mantener las estructuras y terrenos del biodomo. Rastrillar hojas muertas, colocarlas en bolsas de basura selladas y enterrarlas a por lo menos 6 pies de profundidad.

Operadora de sistemas de computación: Celeste Parker
Asegurar que todo el equipo de computación esté funcionando correctamente, e ingresar todos los datos del biodomo para las gráficas.

Mantenimiento de agua: Harrison Grant
Controlar y mantener el sistema de agua para que haya suficiente agua disponible para todos los organismos.

Cocinero: Gabriel Gutierrez
Preparar desayuno, almuerzo y cena para los/as residentes. Asegurar que los alimentos proporcionen lo que los cuerpos de los/as Econautas necesitan.

Cazadora: Erica Li
Cazar conejos con arco y flecha y llevárselos al cocinero. Buscar frutas y plantas comestibles en el área del bosque.

Pastora: Sarah Willard
Cuidar las cabras, asegurando que tengan bastante comida y agua. Ordeñar las cabras y llevarle la leche al cocinero.

Doctor: Ana Lopez
Proporcionar atención médica básica y controles regulares a todos/as los/as residentes del biodomo.

Deber de entierro: Todos (este deber rota mensualmente)
Para poder mantener el biodomo ordenado y lleno de vida, enterraremos cualquier animal o planta que muera. Estos serán colocados en bolsas de basura selladas y enterrados a por lo menos 6 pies de profundidad en la tierra. Enterraremos toda la basura también.

¿Por qué habrán decidido enterrar la basura y la materia muerta? Muchas bacterias descomponedoras no pueden sobrevivir a 6 pies de profundidad, porque necesitan oxígeno.

Los/as Econautas tomarán turnos para enterrar toda materia muerta, excrementos y basura en la profundidad de la tierra.
Expediente del biodomo 3: organismos recomendados para incluir en el biodomo

<table>
<thead>
<tr>
<th>Productores</th>
<th>Consumidores primarios</th>
<th>Consumidores secundarios</th>
<th>Descomponedores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bananos</td>
<td>Cabras pigmeas</td>
<td>Jabalíes</td>
<td>Gusanos</td>
</tr>
<tr>
<td>Papayas</td>
<td>Cabras</td>
<td>Tilapias (peces)</td>
<td>Bacterias del suelo</td>
</tr>
<tr>
<td>Batatas</td>
<td>Pollos</td>
<td>Arañas</td>
<td>Hongos del suelo</td>
</tr>
<tr>
<td>Remolachas</td>
<td>Cucarachas</td>
<td>Serpientes</td>
<td>Insectos bolita</td>
</tr>
<tr>
<td>Cacahuates</td>
<td>Hormigas</td>
<td>Ostras</td>
<td>Escarabajos</td>
</tr>
<tr>
<td>Caupíes</td>
<td>Abejas</td>
<td>Cangrejos</td>
<td></td>
</tr>
<tr>
<td>Arroz</td>
<td>Colibríes</td>
<td>Reptiles</td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>Murciélagos</td>
<td>Escorpiones</td>
<td></td>
</tr>
<tr>
<td>Campanitas</td>
<td>Polillas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitoplancton (algas minúsculas)</td>
<td>Zooplancton (animales acuáticos diminutos)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Árboles de goma</td>
<td>Mariposas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musgos</td>
<td>Termitas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helechos</td>
<td>Tortugas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elodea (planta acuática)</td>
<td>Artemias</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Me pregunto por qué decidieron no incluir lombrices. Las bacterias necesitan lombrices para descomponer materia muerta en pequeños pedazos para que las bacterias puedan alimentarse de esta materia.

Qué bueno que incluyeron productores para ecosistemas terrestres y acuáticos.
Expediente del biodomo 4: diagrama del sistema de agua del biodomo

Parece que el sistema de agua en el biodomo fue muy bien diseñado. No puedo ver nada que hubiera causado que el ecosistema tuviera problemas.
Expediente del biodomo 5: diario de una pastora de cabras

Año 1

Invierno:
Hoy fue el primer día de mi trabajo soñado: ¡mi primer día pastoreando cabras en el biodomo de Econautas! Estoy tan feliz de haber podido unirme al equipo en esta gran aventura. Tengo a cargo un rebaño de veinte cabras adultas de edades entre tres y ocho años. La mayoría de las cabras no viven más de diez años, así que es posible que pierda algunas antes de dejar el biodomo. Aún así, estoy ansiosa de ver qué nos traerá esta experiencia.

Primavera:
Para mantener nuestro ambiente de biodomo limpio y ordenado, el equipo toma turnos para enterrar toda la basura, excrementos, animales muertos y materia de plantas muertas. Adivina a quién le toca este mes... ¡a mí! He estado rastrillando las hojas y plantas muertas que encuentro, metiéndolas en bolsas de basura y amarrando las bolsas bien apretadas antes de enterrarlas profundamente en el suelo. Por lo menos no ha habido ningún animal muerto este mes. Este no es mi trabajo favorito aquí en el biodomo, pero supongo que cada persona tiene que ayudar.

Verano:
¡El verano en el biodomo es hermoso! El sol brilla, los pájaros cantan y las cabras disfrutan del abundante pasto verde que pueden comer. Todos parecen felices y saludables.

Otoño:
Es época de cría para las cabras aquí en el biodomo. ¡Tenemos los dedos cruzados para que tengamos cabra bebés (los llamamos chivos)! La veterinaria vino hoy para los controles anuales de las cabras y dijo que están sanas.

¡Las chivitas son tan tiernas!
Año 2

Invierno:
Los días de invierno son cortos y fríos... ¡y las noches invernales son largas y frías! No hay mucha comida disponible en esta época del año, así que les doy heno a las cabras, de la alfalfa que cultivamos el verano pasado. Por lo menos ellas tienen abrigos invernales gruesos. Cuatro de nuestras cabras hembras están preñadas, y ¡deberían tener sus chivos cuando llegue la primavera! Hasta entonces, tenemos que abrigarnos y tratar de no congelarnos.

Primavera:
Nuestros chivos nacieron la semana pasada, ¡y son muy tiernos! Los chivos están alimentándose bien y creciendo rápido. Es una maravilla ver estas cabras chiquitas cada día. ¡Tengo el mejor trabajo!

Verano:
Me toca enterrar nuestra materia muerta otra vez. Enterrar nuestra materia muerta nunca es mi trabajo favorito, pero este mes ha sido especialmente difícil, porque una de mis cabras viejas murió la semana pasada.SELLé el cuerpo en una bolsa plástica y la enterré junto a todas las hojas y plantas muertas, excrementos y basura. Por lo menos tenemos chivos para que ayuden a mantener el nivel de nuestra población de cabras. Aparte de eso, todos en el biodomo parecen estar bien.

Otoño:
¡Nuevamente es época de cría! La veterinaria vino para el control anual de las cabras y dijo que están sanas. Parece que estamos bien para otro buen año en el biodomo.
Año 3

Invierno:
Invierno otra vez, y una de las cabras murió. No sé qué pasó, no era muy vieja y no parecía estar enferma. Estoy triste de haber perdido una de las del rebaño. Aparte de eso, estamos todos bastante bien, tratando de mantenernos calentitos hasta la primavera.

Primavera:
¡Me encanta la primavera! El tiempo tibio es mucho más cómodo y es bueno para las cabras tener un poco de pasto fresco para comer. Dos de mis cabras tuvieron chivos este año. Son tan lindos, y me alegro de que tengamos chivos, ya que perdimos un par de cabras más viejas en el año pasado. Me toca enterrar la materia muerta otra vez. Es un trabajo sucio, pero creo que me estoy acostumbrando.

Verano:
No puedo entender por qué, pero parece que hemos cosechado menos alfalfa este verano que en el pasado. Eso significa que ahora hay menos para que las cabras coman, y tendrán menos heno para el invierno. Nadie sabe por qué, ya que tenemos mucha luz solar en el biodomo. Supongo que voy a tener que empezar a darles menos comida a las cabras, para que no se nos termine.

Otoño:
Es hora del control anual de las cabras. La veterinaria dijo que las cabras no tienen ninguna enfermedad, pero que se ven un poco flacas. Supongo que estamos viendo los efectos de la escasez de alfalfa del verano. No sé qué hacer. No quiero usar demasiado heno, pero quiero asegurar que las cabras tengan suficiente para comer. Bueno, es época de cría otra vez. ¡Espero que tengamos algunos chivos en primavera!
Año 4

Invierno:
Me estoy empezando a preocupar. Dos de mis cabras murieron este invierno, y no estoy segura por qué. El resto de las cabras se ven un poco flacas, pero se comen todo lo que ven y no tienen ninguna enfermedad. Pienso que tenemos suficiente heno para pasar el invierno. Tal vez todo va a mejorar una vez que las cabras puedan comer un poco de pasto fresco primaveral.

Primavera:
Ninguna de las cabras tuvo chivos esta primavera. Estoy tan decepcionada. Las crías de las cabras son tan entretenidas, y me gusta pensar que el rebaño está bien. Me toca reunir y enterrar materia muerta otra vez. Pasé el rastrillo y recogí un montón de hojas y excrementos, pero por lo menos no habían animales muertos que enterrar. Estoy en espera de una buena cosecha de verano para las cabras.

Verano:
La cosecha de alfalfa de este año es aún más pequeña que la del año pasado. Estoy preocupada sobre cómo vamos a darles suficiente alimento a las cabras este verano y cómo nos quedará suficiente alfalfa para hacer heno para el invierno.

Otoño:
Es época de cría otra vez, y hora de nuestra visita de control anual de la veterinaria. Dijo que las cabras no muestran ninguna señal de enfermedad, pero que se ven muy flacas. Parece que esto es un problema con muchos de los animales en el biodomo. Todos se están poniendo más delgados. No sé qué hacer. La cosecha de alfalfa sigue produciendo menos que en los primeros años del proyecto de biodomo.
Año 5

Invierno:
Tres cabras más murieron este invierno. Me puse triste de perderlas, y estoy confundida acerca de qué les está pasando a las cabras. Sé que no están enfermas. ¿pero por qué no están realmente sanas? ¿Debería estar haciendo algo diferente? Algo tiene que cambiar pronto.

Primavera:
Otra primavera sin que hayan nacido chivos. Ahora tenemos menos cabras que cuando comenzamos, aunque seis chivos nacieron en los primeros años del biodomo. No me gusta ver el rebaño haciéndose más pequeño. Me toca reunir y enterrar materia muerta otra vez.

Verano:
La cosecha de alfalfa de este verano fue la más chica hasta el momento. No estoy segura de qué van a comer las cabras este invierno. Ya están tan flacas.

Otoño:
Nos han retirado a todos del biodomo. Resulta que todas las poblaciones habían comenzado a disminuir y no era seguro para que nosotros nos quedáramos. La veterinaria, sin embargo, no pudo encontrar señales de enfermedad. Me pregunto qué sucedió. Estoy tan triste porque no podremos completar nuestra misión.